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Scanning force microscopy (SFM) was used for probing nanomechanical properties of
compliant polymeric materials with lateral resolution from 20 to 140 nm and indentation
depths from 2 to 200 nm. Sneddon’s, Hertzian, and Johnson–Kendall–Roberts theories of
elastic contacts were tested for a variety of polymeric materials with Young’s modulus
ranging from 1 MPa to 5 GPa. Results of these calculations were compared with a
Sneddon’s slope analysis widely used for hard materials. It was demonstrated that the
Sneddon’s slope analysis was ambiguous for polymeric materials. On the other hand, all
models of elastic contact allowed probing depth profile of elastic properties with
nanometre scale resolutions. The models gave consistent values of elastic moduli for
indentation depth up to 200 nm with lateral resolution better 100 nm for most polymeric
materials. C© 1998 Kluwer Academic Publishers

1. Introduction
Probing of local surface mechanical properties of vari-
ous materials with a submicron resolution became a re-
ality after the introduction of atomic force microscopy
(AFM) and subsequent development in scanning force
microscopy (SFM) technique [1–4]. However, to date,
only a few attempts have been made to implement quan-
titative nanoprobing of mechanical properties of com-
pliant polymers [4–9]. These attempts were based on
classic mechanical approaches developed for “hard”
metal and semiconductor surfaces [10–15]. The overall
slope of force–distance curve and Sneddon’s formula,
were usually used for the treatment of SFM data [4–8,
10, 11]. However, this approach did not account for the
specific features of compliant macromolecular materi-
als such as very large indentation depth and viscoelastic
behaviour. For quantitative nanoprobing of mechanical
properties, the types of micromechanical deformation
should be clarified and appropriate models of elastic
contact for compliant polymer solids should be tested.

In the present communication, we report the results
on micromechanical properties of polymeric materials
based on classic theories of elastic contacts: Sneddon’s,
Hertzian, and Johnson–Kendall–Roberts (JKR) [10–
15]. These theories were tested for indentation depths
from 2 to 200 nm and for sample Young’s modulus,E,
from 1 MPa to 5 GPa and compared with a Sneddon’s
slope analysis.
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2. Experimental procedure
The samples for investigation were selected to repre-
sent a variety of polymeric materials with a wide range
of elastic properties. Polyisoprene rubber (Aldrich)
had a nominal Young’s modulus of 1–3 MPa [16].
Polyester-based Elastollan S60D53N and S69D53N
polyurethanes (PUs) (BASF) and Dyreflex PT92004
PU (Bayer) had Young’s moduli in the range of 10–
40 MPa. Polyvynilchloride (PVC) was Selectophore
from Fluka with Young’s modulus in the range 1–4 GPa.
Polystyrene (PS) withMw= 250 000 andE= 2–5 GPa
was obtained from Janssen Chimica. Smooth poly-
mer films of several micrometer thickness and several
nanometre of surface microroughness were prepared by
spin-coating technique (Headway spin-coater).

A combination of contact SFM mode in air and fluid
(MilliQ water and absolute alcohol), and tapping and
phase modes in air was used to characterize the poly-
mer’s surfaces according to the well established proce-
dure on the Dimension 3000 microscope [17]. We used
a set of V-shaped cantilevers with spring constants,kn,
of 0.25, 0.5, 0.58, 2.9 and 47 N m−1 to probe poly-
meric materials with very different elastic properties
[18]. To estimate tip end radius, we scanned a refer-
ence sample of mixed gold nanoparticles tethered to a
self-assembled monolayer [18].

3. Results and discussion
Typical force–distance curves used for calculation of
elastic moduli are shown in Fig. 1 for rubber and
Elastollan polyurethanes in water at 0.5 Hz approach–
retract frequency. All curves obtained here are similar to
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Figure 1 Force–distance data for the rubber sample (a) and for poly-
urethane (b) in approaching-retracing cycle, force scale in nN with ar-
bitrary zero level, distance is in nm with arbitrary zero point. A thin
line is the approaching part and a bold line is the retracing part. Linear
approximation which can be used for Sneddon’s analysis are shown by
straight lines for rubber sample.

these ones and show jump-to-contact range, non-linear
repulsive range in the approaching part, and pull-off
range in the retracing part.

First, we tested a popular approximation frequently
used for analysis of indentation data and calculation
of Young’s modulus from an overall slope of a force–
distance curve by using the Sneddon’s formula [5–8,
11–13]. The Sneddon’s model gives the relationship
between load gradient, dP/dh, and Young’s modulus,
E, in the form [13]

dP

dh
= 2A1/2

π1/2
E (1)

where E={[(1− ν2
1)/E1]+ [(1− ν2

2)/E2]}−1, com-
posite elastic modulus;E1, E2, ν1, ν2, Young’s moduli
and Poisson’s ratio of a material and an indentor, re-
spectively;P, normal load;A, contact area; andh, the
indentation depth. By estimating dP/dh and contact
area for specific shape of the indentor (circular, pyra-
midic, and parabolic) one can evaluate elastic modu-
lus from Equation 1. Fig. 1a shows examples of the
standard slope analysis applied to the force–distance
data for rubber sample. According to these estimations,
E= 3.6 MPa for rubber, 40–135 MPa for PUs, 250 MPa
for PVC and 3 GPa for PS. These values are reasonable

Figure 2 A double-spring model of elastic contact and major designa-
tions used in this work: left, unloaded state; right, loaded state.

for materials studied and can be used as a rough esti-
mation of elastic moduli as can be discussed below.

To verify the applicability of different theories of
elastic contact we used different approaches to analyse
the repulsive force data from the contact point to the
maximum indentation depth in the approaching mode
for the rubber sample (Fig. 1a).

The equations for calculation of Young’s modulus
from cantilever deflection can be derived by using a
two-spring linear model of interacting cantilever spring
and elastic surface (Fig. 2) [7, 8]. Conditions for quasi-
static equilibrium for this model are presented as equal-
ity of cantilever spring forces exerted and elastic surface
response

knzdefl = P(h) (2)

where P(h) is normal load as a function of vari-
able indentation depthh= zpos− zdefl, zdefl is a mea-
sured vertical deflection of the SFM cantilever,zpos
is the vertical displacement of the SFM piezoelement
(Fig. 2). By using relationships between normal load
P(h) and materials/indentation parameters offered in
elastic contact models [10, 20, 21], one can obtain
analytical expressions of Young’s modulus for each
model. For the polymer systems considered here, we as-
sumeEtipÀ Epolymerand, therefore,E= Epolymer(elas-
tic modulus of silicon tip is 160 GPa versus 0.01–1 GPa
for polymers) [16].

After manipulation with initial Sneddon’s equations
for different models we receive

pyramidic indentor shape

E = (1− v2)π1/2

2(2)1/2βtgα
kn
1zdefl,i,i − 1

h1hi,i − 1
(3a)

parabolic indentor shape

E = (1− v2)

2(R)1/2β
kn
1zdefl,i,i − 1

h1/21hi,i − 1
(3b)

whereβ = Acros/A, Acros is cross-sectional indentor
area at indentation depthh from the apex,β is equal
to for elastic deformation [20];α is half of pyramidic
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Figure 3 Comparison of different models for evaluation of depth depen-
dence of elastic modulus (rubber sample).

angle of the indentor (35◦ for typical SFM pyramidic
tip); R is tip radius; andi , i − 1 refers to the adjacent
indentor (tip) displacements.

Derivation of Young’s modulus from the Hertzian
model gives

E = 3(1− v2)

4

kn

R1/2

zdefl

h3/2
(4)

with JKR model giving

E = 9(1− v2)

4
Rkn1

(
P1

3Rh

)3/2

(5)

where P1= (3P2− 1)[9−1(P2+ 1)]1/3, P2= (zdefl/1

+ 1)1/2, and1 is cantilever deflection at point where
the tip loses contact with the surface [10–21].

To compare the results for various models, we used
Sneddon’s, Hertzian, and JKR approaches to process
force–distance data and calculate Young’s modulus at
different penetration depth for rubber material (Fig. 3).
Three immediate conclusions can be drawn from this
data. First, at very low loads and small indentation
depths less than 20 nm, unstable results are observed.
Young’s modulus variation in this range depends criti-
cally upon the selection of the initial contact point. We
observed that variation of the initial point by±2 nm
can result in one order of magnitude variation of elas-
tic modulus values at very small indentation depths.
However, behaviour at larger indentation depth remains
stable (for more discussions see Ref. 22). This phe-
nomenon is known for the SFM cantilevers and is re-
lated to the destabilizing attractive force gradient in the
vicinity of surfaces [15].

Second, Young’s modulus for homogeneous poly-
mers studied is independent of indentation depth and is
virtually constant at the indentation depths larger than
20 nm (beyond surface instabilities). This behaviour is
expected for homopolymers studied here. The maxi-
mum indentation depth for purely elastic deformation
varies reciprocally to the elastic properties of materials
from 200 nm for rubber to 20 nm for PS. Local con-
tact pressure gradually increases with indentation depth

Figure 4 Variation of local contact pressure and the contact radius for
rubber sample calculated for the Hertzian model.

as calculated using the Hertzian model and shown in
Fig. 4 for rubber sample. The contact radius gradually
increases with the normal load from up to 80 nm for
rubber at maximum loads (Fig. 4). The contact radius
at maximum loads decreases to 50–60 nm for PUs, and
is only about 10 nm for hard PS.

Third, all three approaches give convergent results
and very close absolute values of Young’s modulus at
indentation depths higher than 20 nm. Deviations of
elastic modulus values obtained for the Sneddon’s pyra-
midic model at very low indentation depth are related
to the underestimation of the initial contact area. The
Sneddon’s parabolic model gives virtually identical re-
sults (with higher scattering) with the Hertzian model.
On the other hand, the Hertzian model gives 25% higher
absolute value of elastic modulus as compared to JKR
calculations. This difference is caused by non inclu-
sion of the zero load contact area in the Hertzian model
[20–21].

Next, we considered the limitations of sphere–plane
models related to elastic deformations larger than
sphere radius. We calculated the indentation depth ver-
sus the normal load for Hertzian sphere–plane and
cone–plane models (Fig. 5). As we concluded from
the comparison with experimental data for rubber, the
Hertzian model nicely describes experimental data at
small indentation depths but deviates significantly for
h> 70 nm. Deviation reaches 10% ath= 150 nm. On
the other hand, forh> 80 nm, the cone–plane model
describes experimental behaviour very closely (Fig. 5).
Therefore, the sphere–plane model can be used in the
range of indentation depth up to a diameter of the
SFM tip (h= 50–100 nm) which is typical range of
depths probed for elastomers. Larger indentation depths
(h> 2R) should be considered with caution and correc-
tions must be included if precision better than 10–20%
is required.

The Hertzian model was used to calculate the depth
profile of elastic moduli for a set of polymeric materi-
als (Fig. 6). The experimental data is presented along
with the bars representing range of Young’s modulus
measured for bulk materials. This plot shows the very
close correlation between the level of elastic moduli
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Figure 5 Variation of indentation depth versus load for sphere–plane
(squares) and cone–plane (triangles) models in comparison with exper-
imental data for rubber (solid line).

Figure 6 Summarized data for the depth variation of elastic modulus
for rubber, two different PUs, PVC at high and low frequencies, and PS.
Bars demonstrate the range of elastic bulk modulus variation for spe-
cific materials (frequency, molecular weight, composition dependent).
Rhombic marks show the values of Young’s moduli determined from
the Sneddon’s slope analysis.

probed by SFM and mechanical properties of bulk ma-
terials. The absolute values of elastic moduli vary by
four orders of magnitude and ranging from 2 MPa for
rubber to 5 GPa for PS. Absolute values determined

from SFM measurements tend to be closer to the higher
limit the Young’s moduli determined from tensile ex-
periments as is expected for compression testing [23].
All data are shown here at 0.5 Hz frequency of con-
tact. Additional measurements at various frequencies
demonstrate very strong frequency dependence for var-
ious polymeric materials as will be discussed in a sep-
arate publication. As an example, we display two very
different elastic modulus curves for PVC obtained at
high (90 Hz) and low (4.6 Hz) frequencies (Fig. 6).

Finally, we estimated the accuracy of a linear approx-
imation for the Sneddon’s model (Equation 1). Direct
comparison of elastic moduli obtained from modulus–
depth curves in Fig. 6 with the slope analysis presented
in Fig. 1 shows significant differences in absolute values
(see data for comparison in Fig. 6). Typical deviation
of the slope analysis results from the complete calcu-
lations according to Equations 2–5 is about 30% but it
can reach as much as 100% in the case of significant
non-linearity of force–distance data and non-optimal
cantilever stiffness (e.g. for PUs or PS).

4. Conclusions
By combining optimal cantilever parameters and ex-
perimental conditions we can obtain reliable force–
distance data which is appropriate for further contact
mechanics analysis for wide selection of polymeric
materials with elastic moduli ranging from 1 MPa to
several GPas. Both Sneddon’s and Hertzian models of
elastic contact give consistent and reliable results in the
range of indentation depth from 2–20 to 30–200 nm for
different materials with lower limit dictated by surface
instabilities and maximum depth determined by elastic
deformation limit. The Hertzian model of elastic con-
tact gives reliable absolute values of elastic modulus
at given experimental conditions that eliminate strong
capillary forces. The deviation is estimated to be about
25% if compared with JKR model for very compliant
materials, and is much smaller for harder polymers.
Within this accuracy, the Hertzian model is applicable
to a wide range of polymeric materials from rubbers
to glassy polymers. However, obtaining higher preci-
sion requires the employment of more complicated JKR
model and measurements of local interfacial energies.
This work is in progress.

In spite of large elastic indentation depth for com-
pliant polymeric materials and difficulties in judgment
of cantilever selection criteria, simple slope analysis of
force–distance data is very ambiguous and can be rec-
ommended only for crude estimation of elastic moduli
with possible 30–100% error. Direct calculation of elas-
tic moduli implemented here gives reliable results on
depth modulation of elastic properties with vertical res-
olution better than 10 nm and lateral resolution in the
range of 20–150 nm for different materials. Close cor-
relation is observed between elastic moduli determined
by SFM and known values for bulk materials. A large
range of elastic polymer properties can be probed if a
selection of cantilever stiffness from 0.1 to 50 N m−1

is available. Elastic moduli can be measured as low as
several MPas for rubbers to as high as several GPas for
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glassy polymers. The SFM ability to probe depth pro-
files of elastic properties at the submicron scale is un-
parallelled for nanocomposite materials with spatially
distributed mechanical response.

Acknowledgements
This work is supported by The Surface Engineering and
Tribology Program, The National Science Foundation,
CMS-94-09431 and CMS-9610408 Grants and Becton
Dickinson Corp. Donation of polyurethane materials
by BASF and Bayer is greatly appreciated. The authors
thank J. Hazel for assistance and helpful discussion.

References
1. G. B I N N I G , C. F. Q U A T E andC. G E R B E R, Phys. Rev. Lett.

12 (1986) 930.
2. D. S A R I D, “Scanning force microscopy” (Oxford University

Press, New York, 1991).
3. B . R A T N E R and V . V . T S U K R U K, (eds) “Scanning probe

microscopy of polymers” (ACS Symposium Series, Washington DC,
v. 694, 1997).

4. V . V . T S U K R U K, Rubber Chem. & Techn. 199810, 430, 1997.
5. M . R. V A N L A N D I N G H A M , S. H. M C K N I G H T , G. R.

P A L M E S E, R. F. E D U L J E E, J. W. G I L L E S P I E andR. J.
M C C U L O U G H, J. Mater. Sci. Lett.16 (1997) 117.

6. M . R. V A N L A N D I N G H A M , S. H. M C K N I G H T , G. R.
P A L M E S E, J. R. E L L I N G S, X . H U A N G, T. A . B O G E T T I,
R. F. E D U L J E EandJ. W. G I L L E S P I E, J. Adhesion31(1997)
64.

7. M . R A D M A C H E R, M . F R I T Z, C. M . K A C H E R, J. P.
C L E V E L A N D andP. K . H A N S M A , Biophys. J. 70 (1996) 556.

8. N. J. T A O, S. M . L I N D S A Y andS. L E E S, ibid. 63 (1992)
1165.

9. K . L . W A H L , S. V . S T E P N O W S K IandW. L . U N E R T L,
J. Tribologyin press (1998).

10. B. B H U S H A N, (ed.), “Micro/nanotribology and its applications”
(NATO ASI Series E330, Kluwer Acad. Publ., Dordrecht, 1997).

11. S. M . H U E S, R. J. C O L T O N, E. M E Y E R and H.-J.
G U N T H E R O D T, MRS Bull. 18(1)(1993) 41.

12. S. M . H U E S, C. F. D R A P E R andR. J. C O L T O N J. Vac.
Sci. Technol. B12 (1994) 2211.

13. I . N . S N E D D O N, Int. J. Engng. Sci. 3 (1965) 47.
14. G. M . P H A R T, W. C. O L I V E R and F. B. B R O T Z E N,

J. Mater. Res.7 (1992) 613.
15. N. A . B U R N H A M , D. D. D O M I N G U E Z, R. L . M O W E R Y

andR. J. C O L T O N, Phys. Rev. Lett.64 (1990) 1931.
16. J. J. A K L O N I S andW. J. M A C K N I G H T , “Introduction to

polymer viscoelasticity” (J. Wiley & Sons: NY, 1983).
17. V . V . T S U K R U K andD. H. R E N E K E R, Polymer36 (1995)

1791.
18. M . P. E V E R S O N,V . N. B L I Z N Y U K andV . V . T S U K R U K,

J. Tribology120, 489, 1998.
19. V . N. B L I Z N Y U K , J. H. H A Z E L , J. W U and V . V .

T S U K R U K, in “Scanning probe Microscopy of polymers,” edited
by B. Ratner and V. V. Tsukruk (ACS Symposium Series, Washing-
ton DC, v. 690, 1997.)

20. A . I . S V I R I D E N O K, S. A . C H I Z H I K and M . I .
P E T R O K O V E T S, “Mechanics of a discreet friction contact”
(Nauka I Tekhnika, Minsk, 1990).

21. K . L . J O H N S O N, K . K E N D A L L andA . R O B E R T S, Proc.
R. Soc., LondonA324 (1971) 301.

22. S. A . C H I Z H I K , Z . H U A N G, V . V . G O R B U N O V, N. K .
M Y S H K I N andV . V . T S U K R U K, Langmuir, 14, 2606, 1998.

23. L . E. N I E L S E N andR. F. L A N D E L , “Mechanical properties
of polymers and composites” (Marcel Dekker, NY, 1994).

Received 29 January
and accepted 2 July 1998

4909


